Interfacial Challenges in Solid-State Li Ion Batteries
نویسندگان
چکیده
منابع مشابه
Interfacial Architecture for Extra Li+ Storage in All-Solid-State Lithium Batteries
The performance of nanocomposite electrodes prepared by controlled ball-milling of TiS₂ and a Li₂S-P₂S₅ solid electrolyte (SE) for all-solid-state lithium batteries is investigated, focusing on the evolution of the microstructure. Compared to the manually mixed electrodes, the ball-milled electrodes exhibit abnormally increased first-charge capacities of 416 mA h g(-1) and 837 mA h g(-1) in the...
متن کاملNegating interfacial impedance in garnet-based solid-state Li metal batteries.
Garnet-type solid-state electrolytes have attracted extensive attention due to their high ionic conductivity, approaching 1 mS cm-1, excellent environmental stability, and wide electrochemical stability window, from lithium metal to ∼6 V. However, to date, there has been little success in the development of high-performance solid-state batteries using these exceptional materials, the major chal...
متن کاملFabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries.
Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow...
متن کاملElectrolyte stability determines scaling limits for solid-state 3D Li ion batteries.
Rechargeable, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly desirable to power an emerging class of miniature, autonomous microsystems that operate without a hardwire for power or communications. A variety of three-dimensional (3D) LIB architectures that maximize areal energy density has been proposed to address this need. The success of all ...
متن کاملAntiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries
Antiperovskite Li3OCl superionic conductor films are prepared via pulsed laser deposition using a composite target. A significantly enhanced ionic conductivity of 2.0 × 10-4 S cm-1 at room temperature is achieved, and this value is more than two orders of magnitude higher than that of its bulk counterpart. The applicability of Li3OCl as a solid electrolyte for Li-ion batteries is demonstrated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physical Chemistry Letters
سال: 2015
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.5b02352